Correlation of topographic surface and volume data from three-dimensional electron microscopy.
نویسندگان
چکیده
Three-dimensional(3D) reconstructions from tilt series in an electron microscope show in general an anisotropic resolution due to an instrumentally limited tilt angle. As a consequence, the information in the z direction is blurred, thus making it difficult to detect the boundary of the reconstructed structures. In contrast, high-resolution topography data from microscopic surface techniques provide exactly complementary information. The combination of topographic surface and volume data leads to a better understanding of the 3D structure. The new correlation procedure presented determines both the height scaling of the topographic surface and the relative position of surface and volume data, thus allowing information to be combined. Experimental data for crystalline T4 bacteriophage polyheads were used to test the new method. Three-dimensional volume data were reconstructed from a negatively stained tilt series. Topographic data for both surfaces were obtained by surface relief reconstruction of electron micrographs of freeze-dried and unidirectionally metal-shadowed polyheads. The combined visualization of volume data with the scaled and aligned surface data shows that the correlation technique yields meaningful results. The reported correlation method may be applied to surface data obtained by any microscopic technique yielding topographic data.
منابع مشابه
Application of Scanning Electron and Atomic Force Mode Microscopy on inscription from Proto-Elamite period in Tappeh Sofalin
The study of cultural heritage artifacts and the research of a protection and restoration intervention create with - and are often limited to - a complete characterization of their surface. This is not only factual for museum objects, but also for archaeological artifacts, because the object as it was discovered may contain precious unknown information that could be lost by too much aggressive ...
متن کاملNoninvasive coronary imaging using electron beam CT: surface rendering versus volume rendering.
OBJECTIVE Three-dimensional data for noninvasive imaging of the coronary arteries are acquired from electron beam CT, multidetector CT, or MR imaging. Most commonly, surface rendering is used for three-dimensional processing, but recent advances in hardware and software technology have made it possible to use volume rendering. Our objective was to compare volume rendering with surface rendering...
متن کاملInvestigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application
CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...
متن کاملسنتز گرافن سه بعدی و بهینهسازی مورفولوژی آن
Due to electrical properties (high electron mobility) and electrochemical characteristics (high electron transport rate), graphene-based materials have been widely applied for various scientific fields. However, due to their two-dimensional structures, these materials have low active sites for reaction. Therefore, changing from two-dimensional sheets dimensional to the three-dimensi...
متن کاملLarge-volume en-bloc staining for electron microscopy-based connectomics
Large-scale connectomics requires dense staining of neuronal tissue blocks for electron microscopy (EM). Here we report a large-volume dense en-bloc EM staining protocol that overcomes the staining gradients, which so far substantially limited the reconstructable volumes in three-dimensional (3D) EM. Our protocol provides densely reconstructable tissue blocks from mouse neocortex sized at least...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of structural biology
دوره 136 1 شماره
صفحات -
تاریخ انتشار 2001